MATH3210 - SPRING 2022 - SECTION 001

CHAPTERS 5 AND 6 - REVIEW SHEET

HOW TO USE THIS REVIEW SHEET

On the exam or problems, you may use any of the definitions and theorems stated on the review sheet, *unless you are explicitly asked to prove a theorem listed here*. Any unnamed theorem you may use without citing. If you use a named theorem, cite that theorem by name when invoking its conclusions. Please don't hesitate to ask questions. I've proofread this, but typos may still lurk!

1. INTEGRATION

Definition 1. Let I = [a, b] be a closed interval. A *partition* of I is a finite set $\mathcal{P} = \{a = x_0, x_1, \ldots, x_n = b\}$, which are thought of as "cut points" for breaking up I into smaller subintervals. If \mathcal{P} and \mathcal{Q} are partitions, we say that \mathcal{P} is refined by \mathcal{Q} , or that \mathcal{Q} refines \mathcal{P} , if $\mathcal{P} \subset \mathcal{Q}$ (ie, \mathcal{Q} cuts up the interval at the points of \mathcal{P} , and maybe more).

Definition 2. Let $f:[a,b] \to \mathbb{R}$ be a bounded function, and \mathcal{P} be a partition of [a,b]. Then define

$$U(f, \mathcal{P}) = \sum_{k=0}^{n-1} M_i(x_{i+1} - x_i), \text{ where } M_i = \sup_{x \in [x_i, x_{i+1}]} f(x)$$
$$L(f, \mathcal{P}) = \sum_{k=0}^{n-1} m_i(x_{i+1} - x_i), \text{ where } m_i = \inf_{x \in [x_i, x_{i+1}]} f(x)$$

 $U(f,\mathcal{P})$ and $L(f,\mathcal{P})$ are the upper and lower sum approximations for f. Then define

$$\overline{\int}_{a}^{b} f \, dx = \inf_{\mathcal{P}} U(f, \mathcal{P}) \qquad \underline{\int}_{a}^{b} f \, dx = \sup_{\mathcal{P}} L(f, \mathcal{P})$$

We say that f is integrable if $\overline{\int}_{a}^{b} f \, dx = \underline{\int}_{a}^{b} f \, dx$

Theorem 1. Let I = [a, b], \mathcal{P} and \mathcal{Q} be partitions of I such that \mathcal{Q} refines \mathcal{P} , and $f : I \to \mathbb{R}$ be a bounded function. Then

$$L(f, \mathcal{P}) \le L(f, \mathcal{Q}) \le \underline{\int}_{a}^{b} f \, dx \le \overline{\int}_{a}^{b} f \, dx \le U(f, \mathcal{Q}) \le U(f, \mathcal{P}).$$

Theorem 2. Let I = [a, b] and $f : I \to \mathbb{R}$ be a bounded function. The following are equivalent:

- f is integrable
- For any $\varepsilon > 0$, there exists a partition \mathcal{P} of I such that $U(f, \mathcal{P}) L(f, \mathcal{P}) < \varepsilon$
- There exists a sequence of partitions \mathcal{P}_n of I such that $U(f, \mathcal{P}_n) L(f, \mathcal{P}_n) \to 0$
- There exists a real number A and a sequence of partitions \mathcal{P}_n of I such that $U(f, \mathcal{P}_n) \to A$ and $L(f, \mathcal{P}_n) \to A$.

Theorem 3. If $f : [a, b] \to \mathbb{R}$ is monotone (either increasing or decreasing), then f is integrable.

Theorem 4. If $f : [a, b] \to \mathbb{R}$ is continuous, then f is integrable.

The following theorem is informally stated and has more precise statements in the book. It important to understand when you can use it, but the formal statements are less important:

Theorem 5.

- Integration is linear (ie, $\int f + g = \int f + \int g$, and $\int cf = c \int f$ whenever f and g are integrable, and $c \in \mathbb{R}$).
- Integration is order-preserving (ie, if f and g are integrable and $f(x) \leq g(x)$ for all x, then $\int f \leq \int g$).
- *u*-substitution and integration by parts are valid integration techniques and can be phrased as formal identities.
- If f is integrable on [a, b], f is integrable on any subinterval.
- Integrals may be split up along intermediate break points (ie, $\int_a^b f = \int_a^c f + \int_c^a f$).

Theorem 6 (Fundamental Theorem of Calculus I). Let $f : [a,b] \to \mathbb{R}$ be a continuous function such that f' exists and is integrable on (a,b). Then

$$\int_{a}^{b} f'(x) \, dx = f(b) - f(a)$$

Theorem 7 (Fundamental Theorem of Calculus II). Let $f : [a, b] \to \mathbb{R}$ be integrable, and define $F(x) = \int_a^x f(t) dt$. Then F is uniformly continuous on [a, b], and differentiable wherever f is continuous. In fact, if f is continuous at $x \in (a, b)$, then F'(x) = f(x).

2. Infinite Sums and Power Series

Definition 3. A series is an expression of the form $\sum_{k=\ell}^{\infty} a_k$, where $\{a_k\}$ a sequence. ℓ is called the starting index, and is usually $\ell = 0$ or $\ell = 1$. A series has an associated sequence of partial sums $s_n = \sum_{k=\ell}^{n} a_k$. We say that the series

- converges if the sequence of partial sums $s_n \underset{n}{\text{converges}}$
- converges absolutely if the sequence $s_n^+ = \sum_{k=\ell} |a_k|$ converges
- converges conditionally if it converges, but does not converge absolutely

Theorem 8 (Term test). If a series
$$\sum_{k=\ell}^{\infty} a_k$$
 converges, then $\lim_{k \to \infty} a_k = 0$.

Theorem 9 (Comparison test). Let b_k be a sequence of positive numbers.

- If $\sum_{k=\ell}^{\infty} b_k$ converges, $\{a_k\}$ and $K \in \mathbb{N}$ are such that $|a_k| \leq b_k$ for every $k \geq K$, then $\sum_{k=\ell}^{\infty} a_k$ converges absolutely.
- converges absolutely. • If $\sum_{k=\ell}^{\infty} b_k$ diverges and a_k is a sequence such that $a_k \ge b_k$ for all k, then $\sum_{k=\ell}^{\infty} a_k$ diverges.

Theorem 10 (Integral test). Let $f : [1, \infty) \to \mathbb{R}$ is a decreasing, positive function and $a_n = f(n)$, then $\sum_{n=1}^{\infty} a_n$ converges if and only if $\lim_{T\to\infty} \int_1^T f(t) dt$ converges.

Definition 4. If $\{f_k\}$ is a sequence of functions defined on a common interval I, the series associated to f_k is the expression $\sum_{k=1}^{\infty} f_k$. We say that $g_n = \sum_{k=1}^n f_k$ is the sequence of partial sums, and that the

series

- converges (pointwise) if for every $x \in I$, $g_n(x)$ converges
- converges uniformly if g_n converges uniformly

Each of these two modes has the associated notions of pointwise, absolute convergence (if $g_n^+(x) :=$ $\sum |f_n(x)|$ converges to a function) and uniform, absolute convergence (if g_n^+ converges uniformly).

Theorem 11. If
$$\sum_{k=1}^{\infty} f_k$$
 converges uniformly to a function F , then $\int_a^b F(x) dx = \sum_{k=1}^{\infty} \int_a^b f_k(x) dx$.

Definition 5. If c_k is a sequence of real numbers, the power series associated to c_k centered at $a \in \mathbb{R}$ is the series $f(x) = \sum_{k=0}^{\infty} c_k (x-a)^k$. The radius of convergence of f is defined to be $R = \left(\limsup_{k \to \infty} |c_k|^{1/k}\right)^{-1}.$

Theorem 12. A power series converges absolutely to an infinitely differentiable function on the interval (a - R, a + R), where R is its radius of convergence. Furthermore, the convergence is uniform on any closed interval $[b,c] \subset (a-R,a+R)$. We also have that:

$$f'(x) = \sum_{k=1}^{\infty} kc_k (x-a)^{k-1}$$
$$\int_a^b f(x) \, dx = \sum_{k=0}^{\infty} \frac{c_k}{k+1} (b-a)^{k+1}$$

Finally, $f^{(k)}(x) = k! \cdot c_k$.

Theorem 13. Let $f: (a - R, a + R) \rightarrow \mathbb{R}$ be (n + 1)-times differentiable, and

$$p_n(x) := \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k$$

be the nth order Taylor approximation. Then for every $x \in (a - R, a + R)$, there exists c between a and x such that

$$f(x) = p_n(x) + \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}.$$