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CHAPTERS 5 AND 6 - REVIEW SHEET

How to use this review sheet

On the exam or problems, you may use any of the definitions and theorems stated on the review
sheet, unless you are explicitly asked to prove a theorem listed here. Any unnamed theorem you
may use without citing. If you use a named theorem, cite that theorem by name when invoking its
conclusions. Please don’t hesitate to ask questions. I’ve proofread this, but typos may still lurk!

1. Integration

Definition 1. Let I = [a, b] be a closed interval. A partition of I is a finite set P = {a = x0, x1, . . . , xn = b},
which are thought of as “cut points” for breaking up I into smaller subintervals. If P and Q are
partitions, we say that P is refined by Q, or that Q refines P, if P ⊂ Q (ie, Q cuts up the interval
at the points of P, and maybe more).

Definition 2. Let f : [a, b] → R be a bounded function, and P be a partition of [a, b]. Then define

U(f,P) =

n−1∑
k=0

Mi(xi+1 − xi), where Mi = sup
x∈[xi,xi+1]

f(x)

L(f,P) =

n−1∑
k=0

mi(xi+1 − xi), where mi = inf
x∈[xi,xi+1]

f(x)

U(f,P) and L(f,P) are the upper and lower sum approximations for f . Then define∫ b

a

f dx = inf
P

U(f,P)

∫ b

a

f dx = sup
P

L(f,P)

We say that f is integrable if
∫ b

a
f dx =

∫ b

a
f dx

Theorem 1. Let I = [a, b], P and Q be partitions of I such that Q refines P, and f : I → R be a
bounded function. Then

L(f,P) ≤ L(f,Q) ≤
∫ b

a

f dx ≤
∫ b

a

f dx ≤ U(f,Q) ≤ U(f,P).

Theorem 2. Let I = [a, b] and f : I → R be a bounded function. The following are equivalent:

• f is integrable
• For any ε > 0, there exists a partition P of I such thata U(f,P)− L(f,P) < ε
• There exists a sequence of partitions Pn of I such that U(f,Pn)− L(f,Pn) → 0
• There exists a real number A and a sequence of partitions Pn of I such that U(f,Pn) → A
and L(f,Pn) → A.

Theorem 3. If f : [a, b] → R is monotone (either increasing or decreasing), then f is integrable.

Theorem 4. If f : [a, b] → R is continuous, then f is integrable.
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The following theorem is informally stated and has more precise statements in the book. It
important to understand when you can use it, but the formal statements are less important:

Theorem 5.

• Integration is linear (ie,
∫
f + g =

∫
f +

∫
g, and

∫
cf = c

∫
f whenever f and g are

integrable, and c ∈ R).
• Integration is order-preserving (ie, if f and g are integrable and f(x) ≤ g(x) for all x, then∫

f ≤
∫
g).

• u-substitution and integration by parts are valid integration techniques and can be phrased
as formal identities.

• If f is integrable on [a, b], f is integrable on any subinterval.

• Integrals may be split up along intermediate break points (ie,
∫ b

a
f =

∫ c

a
f +

∫ a

c
f).

Theorem 6 (Fundamental Theorem of Calculus I). Let f : [a, b] → R be a continuous function
such that f ′ exists and is integrable on (a, b). Then

∫ b

a

f ′(x) dx = f(b)− f(a).

Theorem 7 (Fundamental Theorem of Calculus II). Let f : [a, b] → R be integrable, and define
F (x) =

∫ x

a
f(t) dt. Then F is uniformly continuous on [a, b], and differentiable wherever f is

continuous. In fact, if f is continuous at x ∈ (a, b), then F ′(x) = f(x).

2. Infinite Sums and Power Series

Definition 3. A series is an expression of the form

∞∑
k=ℓ

ak, where {ak} a sequence. ℓ is called the

starting index, and is usually ℓ = 0 or ℓ = 1. A series has an associated sequence of partial sums

sn =

n∑
k=ℓ

ak. We say that the series

• converges if the sequence of partial sums sn converges

• converges absolutely if the sequence s+n =

n∑
k=ℓ

|ak| converges

• converges conditionally if it converges, but does not converge absolutely

Theorem 8 (Term test). If a series

∞∑
k=ℓ

ak converges, then lim
k→∞

ak = 0.

Theorem 9 (Comparison test). Let bk be a sequence of positive numbers.

• If

∞∑
k=ℓ

bk converges, {ak} and K ∈ N are such that |ak| ≤ bk for every k ≥ K, then

∞∑
k=ℓ

ak

converges absolutely.

• If

∞∑
k=ℓ

bk diverges and ak is a sequence such that ak ≥ bk for all k, then

∞∑
k=ℓ

ak diverges.

Theorem 10 (Integral test). Let f : [1,∞) → R is a decreasing, positive function and an = f(n),

then

∞∑
n=1

an converges if and only if lim
T→∞

∫ T

1

f(t) dt converges.
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Definition 4. If {fk} is a sequence of functions defined on a common interval I, the series associated

to fk is the expression

∞∑
k=1

fk. We say that gn =

n∑
k=1

fk is the sequence of partial sums, and that the

series

• converges (pointwise) if for every x ∈ I, gn(x) converges
• converges uniformly if gn converges uniformly

Each of these two modes has the associated notions of pointwise, absolute convergence (if g+n (x) :=
n∑

k=1

|fn(x)| converges to a function) and uniform, absolute convergence (if g+n converges uniformly).

Theorem 11. If

∞∑
k=1

fk converges uniformly to a function F , then

∫ b

a

F (x) dx =

∞∑
k=1

∫ b

a

fk(x) dx.

Definition 5. If ck is a sequence of real numbers, the power series associated to ck centered at

a ∈ R is the series f(x) =

∞∑
k=0

ck(x− a)k. The radius of convergence of f is defined to be

R =

(
lim sup
k→∞

|ck|1/k
)−1

.

Theorem 12. A power series converges absolutely to an infinitely differentiable function on the
interval (a − R, a + R), where R is its radius of convergence. Furthermore, the convergence is
uniform on any closed interval [b, c] ⊂ (a−R, a+R). We also have that:

f ′(x) =

∞∑
k=1

kck(x− a)k−1

∫ b

a

f(x) dx =

∞∑
k=0

ck
k + 1

(b− a)k+1

Finally, f (k)(x) = k! · ck.

Theorem 13. Let f : (a−R, a+R) → R be (n+ 1)-times differentiable, and

pn(x) :=

n∑
k=0

f (k)(a)

k!
(x− a)k

be the nth order Taylor approximation. Then for every x ∈ (a−R, a+R), there exists c between a
and x such that

f(x) = pn(x) +
f (n+1)(c)

(n+ 1)!
(x− a)n+1.
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